
Secure RESTful
Services

!2

Welcome

!3 !4

About Me

@sspendol

scott@sumnertech.com

About Sumner Technologies
• Originally Established 2005
• Relaunched in 2015
– Focused exclusively on Oracle APEX solutions

• Provide wide range of APEX related Services
– Architecture Design & Reviews
– Security Reviews

– Health Checks
– Education
• On-site, On-line, On-Demand
• Custom & Mentoring

– Oracle Database Cloud Consulting

– Curators of APEX-SERT

!5

Agenda
• Overview
• Secure Web Services
• Server
• Client

• Summary

!6

Overview

!7

Web Services
• Web Services are nothing more than a procedure that

lives on another server
– Typically used when two computers exchange data
– Runs over HTTP or HTTPS
– Results typically contain data formatted in either XML or JSON

!8

Non-Oracle
Database

Oracle
Database

Web Service via HTTP

Oracle REST Data Services
• Oracle REST Data Services
– Formerly called Oracle APEX Listener
– Fully Supported feature of the Oracle Database since 2010
• Can log SRs against a corresponding Database License Provides HTTP/S

Access to Oracle Databases (and other databases)

– Maps HTTP(S) RESTful GETS and POSTS to SQL and PL/
SQL

– Declaratively returns results in JSON or CSV format

• Enables virtually every platform to easily  
and securely access an Oracle Database

!9 !10

ORDS

Oracle REST Data Services Oracle DB

SQLMap & BindURI

JSON Transform to JSON SQL Result Set

HTTP/S Client

ORDS Repositories
• Traditionally, there are actually two ORDS repositories
– One exposed via APEX’s SQL Workshop
– One exposed via ORDS & PL/SQL APIs

• The good news is that in APEX 18.1, the APEX-based
repository will merge into the ORDS repository
– Migration tools will be available to consolidate all web services

• We’ll focus on the ORDS/API based repository

!11

Postman
• Postman is an application that facilitates the

development and testing of web services
– Mac, Windows & Linux
– Save and share web services w/your team
– Paid versions offer more features

• Download and try it:
– https://getpostman.com

• We’ll use Postman to illustrate and  
test web services

!12

Simple Web Service
• Let’s create a simple RESTful Service that returns all

rows from EMP:
– Module: emp
– Template: emp
– Method: GET
– SQL: SELECT * FROM emp

!13

Demo:
Create a Web Service

!14

Web Service URI
• To test the web service, we need to refer to its URI

– ords
• Name of ords.war file; typically ords

– schema
• Schema Name where web service lives; should be changed so as to not

expose the schema name

– module
• Name of web service module

– template
• Name of web service template

!15

https://servername/ords/schema/module/template

Testing the Web Service
• In Postman, enter the URI

of the web service and
click Send
– Result should be a JSON

document containing the
results of all rows of the EMP
table

– Since this is a GET, you can
easily test this in a browser
or even command line

!16

Quick Quiz
• With ORDS, there is no easier way to:
– a) REST-enable your Oracle Database
– b) Create a massive security risk that could be catastrophic

!17

Answer: c) All of the above

Secure Web Services

!18

Secure Web Services
• Clearly, there has to be a way to secure a web service

so that only authorized users can access it
– And access those which are secured

• Server-Side
– How to create a RESTful web service secured with OAuth

• Client-Side
– How to consume a RESTful web service with secured with

OAuth

!19

Server

!20

Dept 10 Web Service
• Let’s create another simple RESTful Service that returns

Department 10 rows from EMP:
– Module: dept10
– Template: emp
– Method: GET
– SQL: SELECT * FROM emp WHERE deptno = 10

• Once created, we can test the new web service in
Postman

!21

Demo:
Create & Test dept10
Web Service

!22

OAuth2
• ORDS makes use of OAuth2 to provide secured web

services
• OAuth2 is an authentication framework that enables

applications to use external user credentials
– Facebook, Google, etc.
– Delegates all authentication services to the service that hosts

the user accounts
– Better approach, as if you dont’ store the  

credentials, then no one can steal them

!23

OAuth vs. OAuth2
• OAuth2 is a complete re-write of OAuth
– They are not compatible
– Most modern systems use OAuth2

• From oauth.com:

!24

OAuth 2.0 is a complete rewrite of OAuth 1.0 from
the ground up, sharing only overall goals and general

user experience. OAuth 2.0 is not backwards
compatible with OAuth 1.0 or 1.1, and should be

thought of as a completely new protocol.

OAuth2 - As Seen on the Internet
• You have probably used OAuth2 at some point
• Any site that allows you to login as Facebook, Google,

etc. is using OAuth2
– Credentials stay at the source; only whether or not you have

successfully logged in is sent
– As well as other information

!25

Adding OAuth2 to a Web Service
• This process is a bit tricky
– Data model & components are a bit strange
– Configuration is disjointed
• About 3/4 can be configured via SQL Developer

• Final 1/4 needs PL/SQL API calls

• But when done correctly, it works flawlessly
– Takes some getting used to

!26

Adding OAuth2 to a Web Service
• Required components:
– Module
– Role
– Privilege
– Client
• Can only be configured via SQL Plus

• Trick is to associate them together properly so that
the web service is protected

!27

Roles
• Roles have a single property: name
– Similar to a database role - it alone is meaningless

• Once created, roles can be associated with both
Privileges and Clients
– This will be the link that protects our web service with a specific

set of client credentials, not just any set

!28

!29

Roles

Privilege Client
RolePrivilegePrivilege ClientClient

Demo:
Create a Role

!30

Privileges
• Similar to Database Privileges
– Grant Select On, Grant Delete On, etc.

• Used to limit access:
– By Module
– By Resource (URL pattern)

• A module can only be 
associated with a single 
privilege
– UI will not warn you of this 

restriction, but rather remove  
the modules from the other 
privilege automatically

!31 !32

Privileges

Privilege
PrivilegePrivilegeRoles

ClientClientResources

Note: A module can only be
mapped to a single privilege

ClientClientModules

Demo:
Create a Privilege

!33

Testing the Web Service
• Now that the module is associated with a Privilege, try

to reload it via Postman
– Should receive a 401: Unauthorized error

!34

Unauthorized
• Because the Module is associated with the Privilege,

ORDS will not let just anyone view it anymore

!35

Privileges:

dept10_priv

Roles:

dept10_role

Modules:

dept10

Clients:

<none>

Clients
• Credential set that can be associated with roles,

privileges or both
• ORDS offers native support of OAuth2 clients via a

set of APIs
– Unlike the rest of ORDS, there is no GUI support for clients

via SQL Developer
– Must use APIs & Views to manage

!36

!37

Clients

Privilege Client
ClientsPrivilegePrivilege ClientRoles

!38

Creating an OAuth2 Client

oauth.create_client
 (
 p_name VARCHAR2 IN,
 p_grant_type VARCHAR2 IN,
 p_owner VARCHAR2 IN DEFAULT NULL,
 p_description VARCHAR2 IN DEFAULT NULL,
 p_allowed_origins VARCHAR2 IN DEFAULT NULL,
 p_redirect_uri VARCHAR2 IN DEFAULT NULL,
 p_support_email VARCHAR2 IN,
 p_support_uri VARCHAR2 IN DEFAULT NULL,
 p_privilege_names VARCHAR2 IN DEFAULT NULL
);

Creating a Client for Dept 10
• Let’s create a client and map that client to dept10_priv

!39

BEGIN
oauth.create_client
 (
 p_name => 'dept10',
 p_grant_type => 'client_credentials',
 p_description => 'Department 10',
 p_support_email => 'dept10@sumnertech.com',
 p_privilege_names => 'dept10_priv'
);
COMMIT;
END;
/ Privilege mapped to client

Almost there…
• Before we can access the web service, the client and

the role need to be associated

!40

Privileges:

dept10_priv

Roles:

dept10_role

Modules:

dept10

Clients:

dept10

Associating a Client & Role
• The only way to associate Clients and Roles is via API

• Revoking is done the same way

!41

oauth.grant_client_role
 (
 p_client_name => 'dept10',
 p_role_name => 'dept10_role'
);

oauth.revoke_client_role
 (
 p_client_name => 'dept10',
 p_role_name => 'dept10_role'
);

Success
• Clients need to be mapped to a role and a privilege
– Yes, it is redundant
– No, it doesn’t care; this is how it works

!42

Privileges:

dept10_priv

Roles:

dept10_role

Modules:

dept10

Clients:

dept10

Testing the Web Service
• Now that all required components are associated,

reload the web service in Postman

!43

Wrong Authorization Type

OAuth2 Credentials
• At this point, we’re requesting a protected web

service but not providing any credentials
– Not sure what you expected…

• In order to access the web service, we must first
provide the OAuth2  
credentials before  
calling the web service

!44

OAuth2 Credentials
• Before we can access the dept10 module, we need to

provide the client credentials of the dept10 client
– Grant Type
– Access Token URL
– Client ID
– Client Secret
– Client Authentication

!45

OAuth2 Credentials
• The token will be returned and stored in Postman
– Click Use Token to use this token when making a request

!46

Success
• At this point, the dept10

module is secured via
the dept10 client
– Users will need to provide a

valid token to access it
– A valid token can only be

obtained by presenting the
Client ID & Client Secret to
ORDS before making the
request

!47

DEPT20 Web Service
• Next, we’ll create a similar web service based on

department 20
– Everything will be the same, but it will have its own role,

privilege and client

• Once created, we will need to use its specific Client ID
& Client Secret to get a token before we can query it
– Which will be a different client that dept10

!48

Demo:
Create & Test dept20
Web Service

!49

Client

!50

Client
• Now that the web services are secured with their

individual OAuth2 clients, we need a way to access
them outside of Postman
– In this case, we’ll use APEX as the client

!51

Tokens
• With OAuth2, the client will use the client

credentials to request a token
– That token will be returned to the client
– It will be good for some set amount of time
• Default for ORDS is 3600 seconds or 1 hour

• Each request made from the client to the server must
contain a valid, unexpired token
– This will prove that the client is in fact, authorized to access the

web service

!52

!53

Token Request Flow

Call Web
Service

Request &
set token

Valid
token?

Yes

No

Set token

Store token
in variable

!54

Token Request Flow

Call Web
Service

Request &
set token

Valid
token?

Yes

No

Set token

Store token
in variable

Validate Token
• The first step is to determine whether or not we have

a valid token
– Token would have been requested and stored in an application

item previously

• Need to also check to see that if we do have one, it is
not expired
– Token “created on” time would have also been stored in an

application item and can be compared to the current time

!55

Validate Token
• This validation code must be called before each

request to the web service
– Since APEX sessions are not mapped to database sessions, it

also must be called for each page view and/or asynchronous
transaction

• Best to put this logic into a procedure and call before
the page renders and at the Initialization PL/SQL
Code
– Shared Components > Security

!56

Validate Token
• A lot of APEX applications today are asynchronous
– Partial page refresh, any action on an IR or IG, region refreshes

• These Ajax-based PL/SQL calls also need a token if
they will touch the web service
– Thus, we can use the Initialization PL/SQL Code
– This snippet gets calls before any APEX processing - full or

partial page

!57 !58

Validate Token

IF p_token IS NULL OR SYSDATE >
 TO_DATE(p_token_expires,'DD-MON-YYYY HH24:MI:SS')
THEN

 -- Fetch the credentials

 -- Get a new token

 -- Set the token and expiry time

ELSE

 -- Use the existing token

END IF;

!59

Token Request Flow

Call Web
Service

Request &
set token

Valid
token?

Yes

No

Set token

Store token
in variable

Requesting a Token
• To request a token, we can use the

APEX_WEB_SERVICE.OAUTH_AUTHENTICATE API

!60

apex_web_service.oauth_authenticate
 (
 p_token_url IN VARCHAR2,
 p_client_id IN VARCHAR2,
 p_client_secret IN VARCHAR2,
 p_flow_type IN VARCHAR2 DEFAULT oauth_cred,
 p_proxy_override IN VARCHAR2 DEFAULT NULL,
 p_transfer_timeout IN NUMBER DEFAULT 180,
 p_wallet_path IN VARCHAR2 DEFAULT NULL,
 p_wallet_pwd IN VARCHAR2 DEFAULT NULL
);

Requesting a Token
• Requesting a token will also set that token for use in

the next web service call
– No need to set it again

• Thus, we can skip the call to
APEX_WEB_SERVICE.OAUTH_SET_TOKEN when
requesting a new token

!61 !62

Requesting a Token

apex_web_service.oauth_authenticate
 (
 p_token_url => apex_util.get_session_state('G_URL_TOKEN'),
 p_client_id => x.clientid,
 p_client_secret => x.clientsecret,
 p_wallet_path => apex_util.get_session_state('G_WALLET_PATH'),
 p_wallet_pwd => apex_util.get_session_state('G_WALLET_PASSWORD')
);

!63

Token Request Flow

Call Web
Service

Valid
token?

Yes

No

Set token

Store token
in variable

Request &
set token

Storing a Token in a Variable
• It’s a good idea to store this token in a variable and

simply re-use it for each request
– Provided that it is not expired

• Thus, when the token is stored, we can also capture
the current date & time and inspect that to see if we
need to request a new token or not
– Token duration value will vary by site
– ORDS default is 3600; can be changed via a parameter
– Your mileage will vary with other sites

!64

Storing a Token in a Variable
• To do this, call the API

APEX_WEB_SERVICE.OAUTH_GET_LAST_TOKEN
to get the last token which was returned
– API has no parameters
– Simply return the results of the call into the variable or item that

the token will be stored in
– Should also store the time the token was requested

!65 !66

Storing a Token in a Variable
apex_util.set_session_state
 (
 'G_TOKEN_' || p_key,
 apex_web_service.oauth_get_last_token
);

apex_util.set_session_state
 (
 'G_TOKEN_' || p_key || '_EXPIRES',
 TO_CHAR((SYSDATE+1/24),'DD-MON-YYYY HH24:MI:SS’)
);

apex_util.set_session_state
 (
 'G_TOKEN_' || p_key || '_EXPIRES_DISP',
 apex_util.get_since((SYSDATE+1/24),'DD-MON-YYYY HH24:MI:SS')
);

!67

Token Request Flow

Call Web
Service

Valid
token?

Yes

No

Set token

Request &
set token

Store token
in variable

Set the Token
• If the token is valid and not expired, we do not need to

get a new one
– But we will need to set that token before calling the web service

• This is done via the
APEX_WEB_SERVICE.OAUTH_SET_TOKEN API call
– Takes in a single parameter - the token

!68

!69

Set the Token

apex_web_service.oauth_set_token
 (
 p_token => p_token
);

!70

Token Request Flow

Call Web
Service

Valid
token?

Yes

No Request &
set token

Store token
in variable

Set token

Call the Web Service
• The APEX_WEB_SERVICE API is a robust set of APIs

that make consuming a web service trivial
– Via APEX or even PL/SQL

• Can call either SOAP or RESTful web services
– Parse responses and encode/decode them

• Manages cookies & HTTP Headers
• Provides built-in support for authentication
– Basic Authentication
– OAuth2

!71 !72

MAKE_REST_REQUEST
APEX_WEB_SERVICE.MAKE_REST_REQUEST(
 p_url IN VARCHAR2,
 p_http_method IN VARCHAR2,
 p_username IN VARCHAR2 DEFAULT NULL,
 p_password IN VARCHAR2 DEFAULT NULL,
 p_scheme IN VARCHAR2 DEFAULT 'Basic',
 p_proxy_override IN VARCHAR2 DEFAULT NULL,
 p_transfer_timeout IN NUMBER DEFAULT 180,
 p_body IN CLOB DEFAULT EMPTY_CLOB(),
 p_body_blob IN BLOB DEFAULT EMPTY_BLOB(),
 p_parm_name IN apex_application_global.VC_ARR2
 DEFAULT empty_vc_arr,
 p_parm_value IN apex_application_global.VC_ARR2
 DEFAULT empty_vc_arr,
 p_wallet_path IN VARCHAR2 DEFAULT NULL,
 p_wallet_pwd IN VARCHAR2 DEFAULT NULL);

Capturing Data
• Two things you can do with the data
– Capture it and store it in a collection/table
• Build APEX reports off of that collection/table

– Display it real-time in a report
• Via APEX_JSON or JSON_TABLE

• Which you use depends on a number of things
– Business Requirements
– Data Consistency
– Performance
– Network

!73

Embed MAKE_REST_REQUEST in SQL
• The MAKE_REST_REQUEST returns a JSON

document
• Thus, it can be embedded in a SQL statement and

processed by either APEX_JSON (11g+) or
JSON_TABLE (12c+)
– APEX_JSON will convert the JSON to XML and then use

XMLTABLE
– JSON_TABLE works natively with JSON

• SQL statement can easily be the source of any APEX
component
– Chart, report, calendar, interactive grid, etc.

!74

!75

SQL using APEX_JSON.TO_XMLTYPE (11g+)
SELECT
 x.*
FROM
 xmltable
 (
 '/json/items/row'
 PASSING apex_json.to_xmltype(
 apex_web_service.make_rest_request
 (
 p_url => :G_URL_EMP,
 p_http_method => 'GET',
 p_wallet_path => :G_WALLET_PATH,
 p_wallet_pwd => :G_WALLET_PASSWORD
)
)
 COLUMNS
 ename VARCHAR2(4000) PATH 'ename',
 empno NUMBER PATH 'empno',
 job VARCHAR2(255) PATH 'job',
 mgr NUMBER PATH 'mgr',
 hiredate VARCHAR2(255) PATH 'hiredate',
 sal NUMBER PATH 'sal',
 deptno NUMBER PATH 'deptno'
) x

!76

SQL using JSON_TABLE (12c+)
SELECT
 jt.*
FROM
 JSON_TABLE
 (
 apex_web_service.make_rest_request
 (
 p_url => :G_URL_EMP,
 p_http_method => 'GET',
 p_wallet_path => :G_WALLET_PATH,
 p_wallet_pwd => :G_WALLET_PASSWORD
),
 '$'
 COLUMNS
 (
 ename VARCHAR2(4000) PATH '$.ename',
 empno NUMBER PATH ‘$.empno',
 job VARCHAR2(255) PATH '$.job',
 mgr NUMBER PATH '$.mgr',
 hiredate VARCHAR2(255) PATH '$.hiredate',
 sal NUMBER PATH '$.sal',
 deptno NUMBER PATH '$.deptno'
)
) jt

APEX 18.1 Web Sources
• APEX 18.1 make it even easier with Web Sources
– 100% declarative, no-code mechanism to consume web

services
– Web Sources can be used as the source of reports, charts &

calendars

!77

Demo:
APEX 18.1 Web Sources

!78

Summary

!79

Summary
• It’s not “if” web services skills will become essential to

developers - it’s “when”
– And “when” was probably a couple of years ago

• There is no easier way to create a RESTful web service
than with ORDS & no easier way to consume that web
service than with APEX
– APEX 18.1 makes it even easier

• However, doing this could create a monumental
security risk, if you don’t take the time to ensure that
all web services are adequately secured
– When properly secured - which is not difficult - there is no risk

!80

!81

